ar X iv : m at h / 06 12 77 8 v 1 [ m at h . D S ] 2 7 D ec 2 00 6 PROBABILISTIC INDUCTIVE CLASSES OF GRAPHS

نویسنده

  • VLADIMIR BATAGELJ
چکیده

Models of complex networks are generally defined as graph stochastic processes in which edges and vertices are added or deleted over time to simulate the evolution of networks. Here, we define a unifying framework — probabilistic inductive classes of graphs — for formalizing and studying evolution of complex networks. Our definition of probabilistic inductive class of graphs (PICG) extends the standard notion of inductive class of graphs (ICG) by imposing a probability space. A PICG is given by: (1) class B of initial graphs, the basis of PICG, (2) class R of generating rules, each with distinguished left element to which the rule is applied to obtain the right element, (3) probability distribution specifying how the initial graph is chosen from class B, (4) probability distribution specifying how the rules from class R are applied, and, finally, (5) probability distribution specifying how the left elements for every rule in class R are chosen. We point out that many of the existing models of growing networks can be cast as PICGs. We present how the well known model of growing networks — the preferential attachment model — can be studied as PICG. As an illustration we present results regarding the size, order, and degree sequence for PICG models of connected and 2-connected graphs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 06 12 24 2 v 1 [ m at h . A P ] 9 D ec 2 00 6 Optimal Uniform Elliptic Estimates for the Ginzburg - Landau System

We reconsider the elliptic estimates for magnetic operators in two and three dimensions used in connection with Ginzburg-Landau theory. Furthermore we discuss the so-called blow-up technique in order to obtain optimal estimates in the limiting cases.

متن کامل

ar X iv : m at h / 06 08 50 8 v 3 [ m at h . Q A ] 1 5 D ec 2 00 6 Classification of modules of the intermediate series over

In this paper, we first discuss the structure of the Ramond N = 2 superconformal algebras. Then we classify the modules of the intermediate series over Ramond N = 2 superconformal algebra.

متن کامل

ar X iv : m at h / 06 12 11 7 v 1 [ m at h . D G ] 5 D ec 2 00 6 Nilradicals of Einstein solvmanifolds

A Riemannian Einstein solvmanifold is called standard, if the orthogonal complement to the nilradical of its Lie algebra is abelian. No examples of nonstandard solvmanifolds are known. We show that the standardness of an Einstein metric solvable Lie algebra is completely detected by its nilradical and prove that many classes of nilpotent Lie algebras (Einstein nilradicals, algebras with less th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006